Lingnan Modern Clinics in Surgery ›› 2020, Vol. 20 ›› Issue (05): 642-649.DOI: 10.3969/j.issn.1009-976X.2020.04.022
• Review • Previous Articles Next Articles
YAO Qing-hai1, LIU Bao-long2
姚庆海1, 刘保龙2
通讯作者:
姚庆海,Email:504626446@qq.corm
CLC Number:
YAO Qing-hai, LIU Bao-long. Research of pathophysiological and biochemical markers in traumatic brain injury[J]. Lingnan Modern Clinics in Surgery, 2020, 20(05): 642-649.
姚庆海, 刘保龙. 颅脑创伤后的病理生理改变及相关生化标记物研究进展[J]. 岭南现代临床外科, 2020, 20(05): 642-649.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.lingnanwaike.com/EN/10.3969/j.issn.1009-976X.2020.04.022
[1] Dixon KJ.Pathophysiology of traumatic brain injury[J]. Phys Med Rehabil Clin N Am, 2017, 28(2): 215-225. [2] Xiong Y, Mahmood A, Chopp M.Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities[J]. Chin J Traumatol, 2018, 21(3): 137-151. [3] Lobue C, Woon FL, Rossetti HC, et al.Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease[J]. Neuropsychology, 2018, 32(4): 401-409. [4] Johan Undén, Ingebrigtsen T, Romner B, et al.Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update[J]. Bmc Medicine, 2013, 11(1): 50-50. [5] Shahjouei, Shima, Sadeghi-Naini, et al. The diagnostic values of UCH-L1 in traumatic brain injury: A meta-analysis[J]. Brain Injury Bi, 2018, 32(1): 1-17. [6] Luoto TM, Raj R, Posti JP, et al.A systematic review of the usefulness of glial fibrillary acidic protein for predicting acute intracranial lesions following head trauma[J]. Front Neurol, 2017, 8(652): 1-16. [7] Wang KK, Yang Z, Zhu T, et al.An update on diagnostic and prognostic biomarkers for traumatic brain injury[J]. Expert review of molecular diagnostics, 2018, 18(2): 165. [8] Mahan MY, Thorpe M, Ahmadi A, et al.Glial fibrillary acidic protein (GFAP) outperforms S100 calcium-binding protein B (S100B) and ubiquitin C-terminal hydrolase L1 (UCH-L1) as predictor for positive computed tomography of the head in trauma subjects[J]. World Neurosurg, 2019, 128: e434-e444. [9] Korley FK, Yue JK, Wilson D, et al.Performance Evaluation of a Multiplex Assay for Simultaneous Detection of Four Clinically Relevant TBI Biomarkers[J]. Journal of Neurotrauma, 2018, 36(1): 182-187. [10] Tsitsopoulos PP, Abu Hamdeh S, Marklund N, et al.Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury[J]. Front Neurol, 2017, 8: 599. [11] Mondello S, Jeromin A, Buki A, et al.Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury[J]. J Neurotrauma, 2012, 29(6): 1096-1104. [12] Kukacka J, Vajtr D, Huska D, et al.Blood metallothionein, neuron specific enolase, and protein S100B in patients with traumatic brain injury[J]. Neuro Endocrinol Lett, 2006, 27(Suppl 2): 116-120. [13] Papa L, Robicsek SA, Brophy GM, et al.Temporal profile of microtubule-associated protein 2: a novel indicator of diffuse brain injury severity and early mortality after brain trauma[J]. J Neurotrauma, 2018, 35(1): 32-40. [14] Dickens AM, Posti JP, Takala RS, et al . Serum metabolites associate with CT findings following TBI[J]. J Neurotrauma, 2018, 35(22): 2673-2683. [15] Wood H.Traumatic brain injury: Evidence of blood-brain barrier disruption after concussion [Internet]. Nature Reviews Neurology, 2018, 14(5): 254. [16] Blyth BJ, Farhavar A, Gee C, et al.Validation of serum markers for blood-brain barrier disruption in traumatic brain injury[J]. J Neurotrauma, 2009, 26(9): 1497-1507. [17] Blyth BJ, Farahvar A, He H, et al.Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood-brain barrier function after traumatic brain injury[J]. J Neurotrauma, 2011, 28(12): 2453-2462. [18] Vajtr D, Benada O, Kukacka J, et al.Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response[J]. Physiol Res, 2009, 58(2): 263-268. [19] Jha RM, Puccio AM, Chou SH-Y, et al.Sulfonylurea receptor-1: a novel biomarker for cerebral edema in severe traumatic brain injury[J]. Crit Care Med, 2017, 45(3): e255-e264. [20] Vedin T, Karlsson M, Edelhamre M, et al.Features of urine S100B and its ability to rule out intracranial hemorrhage in patients with head trauma: a prospective trial[J]. Eur J Trauma Emerg Surg, 2019, DOI: doi.org/10.1007/s00068-019-01201-6. https://doi.org/10.1007/s00068-019-01201-6. [21] Fair K, Farrell D, McCully B, et al. Fibrinolytic activation in patients with progressive intracranial hemorrhage after traumatic brain injury[J]. Neurotrauma, 2019, 6. 10.1089/neu. 2018. 6234. doi:10.1089/neu.2018.6234. [Online ahead of print] [22] Darwish RS, Amiridze NS.Detectable levels of cytochrome C and activated caspase-9 in cerebrospinal fluid after human traumatic brain injury[J]. Neurocrit Care, 2010, 12(3): 337-341. [23] Lorente L, Martín MM, Argueso M, et al .Serum caspase-3 levels and mortality are associated in patients with severe traumatic brain injury[J]. BMC Neurol, 2015, 15(1): 228. [24] Pineda JA, Lewis SB, Valadka AB, et al.Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury[J]. J Neurotrauma, 2007, 24(2): 354-366. [25] Chen S, Shi Q, Zheng S, Luo L, et al.Role of α-II-spectrin breakdown products in the prediction of the severity and clinical outcome of acute traumatic brain injury[J]. Exp Ther Med, 2016, 11(5): 2049-2053. [26] Bayir A, Kalkan E, Koçak S, et al.Fibrinolytic markers and neurologic outcome in traumatic brain injury[J]. Neurol India, 2006, 54(4): 363-365. [27] Morel N, Morel O, Petit L, et al.Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury[J]. J Trauma, 2008, 64(3): 698-704. [28] Yokota H.Cerebral endothelial damage after severe head injury[J]. J Nippon Med Sch, 2007, 74(5): 332-337. [29] Hergenroeder GW, Moore AN, McCoy JP, et al. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury[J]. J Neuroinflammation, 2010, 7: 19. [30] Stein DM, Lindel AL, Murdock KR, et al.Use of serum biomarkers to predict secondary insults following severe traumatic brain injury[J]. Shock Augusta Ga, 2012, 37(6): 563-568. [31] Dash PK, Redell JB, Hergenroeder G, et al.Serum ceruloplasmin and copper are early biomarkers for traumatic brain injury-associated elevated intracranial pressure[J]. J Neurosci Res, 2010, 88(8): 1719-1726. [32] Perez-Barcena J, Ibáñez J, Brell M, et al.Lack of correlation among intracerebral cytokines, intracranial pressure, and brain tissue oxygenation in patients with traumatic brain injury and diffuse lesions[J]. Crit Care Med, 2011, 39(3): 533-540. [33] Jeter CB, Hergenroeder GW, Ward NH, et al.Human traumatic brain injury alters circulating L-arginine and its metabolite levels: possible link to cerebral blood flow, extracellular matrix remodeling, and energy status[J]. J Neurotrauma, 2012, 29(1): 119-127. [34] Kunz M, Nussberger J, Holtmannspötter M, et al.Bradykinin in blood and cerebrospinal fluid after acute cerebral lesions: correlations with cerebral edema and intracranial pressure[J]. J Neurotrauma, 2013, 30(19): 1638-1644. [35] Moritz S, Warnat J, Bele S, et al.The prognostic value of NSE and S100B from serum and cerebrospinal fluid in patients with spontaneous subarachnoid hemorrhage[J]. J Neurosurg Anesthesiol, 2010, 22(1): 21-31. [36] Zemlan FP, Jauch EC, Mulchahey JJ, et al.C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome[J]. Brain Res, 2002, 947(1): 131-139. [37] Stamataki E, Stathopoulos A, Garini E, et al.Serum S100B protein is increased and correlates with interleukin 6, hypoperfusion indices, and outcome in patients admitted for surgical control of hemorrhage[J]. Shock, 2013, 40(4): 274-280. [38] Belli A, Sen J, Petzold A, et al.Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study[J]. Acta Neurochir, 2008, 150(5): 461-470. [39] Ali A, Konakondla S, Zwagerman NT, et al.Glycerol accumulation in edema formation following diffuse traumatic brain injury[J]. Neurol Res, 2012, 34(5): 462-468. [40] Ciaramella A, Della Vedova C, Salani F, et al.Increased levels of serum IL-18 are associated with the long-term outcome of severe traumatic brain injury[J]. Neuroimmunomodulation, 2014, 21(1): 8-12. [41] Casault C, Al Sultan AS, Banoei M, et al.Cytokine responses in severe traumatic brain injury: where there is smoke, is there fire?[J]. Neurocrit Care, 2018, 30(1): 22-32. [42] Zeiler FA, Thelin EP, Czosnyka M, et al.Cerebrospinal fluid and microdialysis cytokines in severe traumatic brain injury: a scoping systematic review[J]. Front Neurol, 2017, 8: 331 [43] Zhang ZY, Li J, Ye Q, et al.Usefulness of serum interleukin-33 as a prognostic marker of severe traumatic brain injury[J]. Clin Chim Acta, 2019, 497: 6-12. [44] Roberts DJ, Jenne CN, Léger C, et al.Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans[J]. J Neurotrauma, 2013, 30(20): 1727-1736. [45] Shen L-J, Yang S-B, Lv Q-W, et al.High plasma adiponectin levels in patients with severe traumatic brain injury[J]. Clin Chim Acta, 2014, 427: 37-41. [46] Darwish RS, Amiridze N, Aarabi B.Nitrotyrosine as an oxidative stress marker: evidence for involvement in neurologic outcome in human traumatic brain injury[J]. J Trauma, 2007, 63(2): 439-442. [47] Clausen F, Marklund N, Lewén A, et al.Interstitial F(2)-isoprostane 8-iso-PGF(2α) as a biomarker of oxidative stress after severe human traumatic brain injury[J]. J Neurotrauma, 2012, 29(5): 766-775. [48] Yu G-F, Jie Y-Q, Wu A, et al.Increased plasma 8-iso-prostaglandin F2α concentration in severe human traumatic brain injury[J]. Clin Chim Acta, 2013, 421: 7-11. [49] Lo T-YM, Jones PA, MinnsRA . Combining coma score and serum biomarker levels to predict unfavorable outcome following childhood brain trauma[J]. J Neurotrauma, 2010, 27(12): 2139-214. [50] Wolf H, Frantal S, Pajenda GS, et al.Predictive value of neuromarkers supported by a set of clinical criteria in patients with mild traumatic brain injury: S100B protein and neuron-specific enolase on trial: clinical article[J]. J Neurosurg, 2013, 118(6): 1298-1303. [51] Rubenstein R, Chang B, Yue JK, et al.Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers[J]. JAMA Neurol, 2017, 74(9): 1063-1072. [52] Diaz-Arrastia R, Wang KKW, Papa L, et al.Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein[J]. J Neurotrauma, 2014, 31(1): 19-25. [53] Tate CM, Wang KKW, Eonta S, et al.Serum brain biomarker level, neurocognitive performance, and self-reported symptom changes in soldiers repeatedly exposed to low-level blast: a breacher pilot study[J]. J Neurotrauma, 2013, 30(19): 1620-1630. [54] Bazarian JJ, Beck C, Blyth B, et al.Impact of creatine kinase correction on the predictive value of S-100B after mild traumatic brain injury[J]. Restor Neurol Neurosci, 2006, 24(3): 163-172. [55] Papa L, Robertson CS, Wang KKW, et al.Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury[J]. Neurocrit Care, 2015, 22(1): 52-64. [56] Copin J-C, Rebetez MML, Turck N, et al.Matrix metalloproteinase 9 and cellular fibronectin plasma concentrations are predictors of the composite endpoint of length of stay and death in the intensive care unit after severe traumatic brain injury[J]. Scand J Trauma ResuscEmerg Med, 2012, 20: 83. [57] DeKosky ST, Abrahamson EE, et al. Association of increased cortical soluble abeta42 levels with diffuse plaques after severe brain injury in humans[J]. Arch Neurol, 2007, 64(4): 541-544. [58] Olivecrona Z, Koskinen L-OD .The release of S-100B and NSE in severe traumatic head injury is associated with APOE ε4[J]. Acta Neurochir, 2012, 154(4): 675-680. [59] Na Y-J, Kim JH .Understanding cooperativity of microRNAs via microRNA association networks[J]. BMC Genomics, 2013, 14(Suppl 5): S17. [60] Najem D, Rennie K, Ribecco-Lutkiewicz M, et al.Traumatic brain injury: classification, models and markers[J]. Biochem Cell Biol, 2018, 96(4): 391-406. [61] Feala JD, Abdulhameed MDM, Yu C, et al.Systems biology approaches for discovering biomarkers for traumatic brain injury[J]. J Neurotrauma, 2013, 30(13): 1101-1116. [62] Fiandaca MS, Mapstone M, Mahmoodi A, et al.Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls[J]. PLoS One, 2018, 13(4): e0195318. [63] Zou H, Bao WX, Luo BY.Applications of proteomics in traumatic brain injury: current status and potential prospects[J]. Chin Med J, 2018, 131(18): 2143-2145. [64] Banoei MM, Casault C, Metwaly SM, et al.Metabolomics and biomarker discovery in traumatic brain injury[J]. J Neurotrauma, 2018, 35(16): 1831-1848. [65] Chitturi J, Li Y, Santhakumar V, et al.Consolidated biochemical profile of subacute stage traumatic brain injury in early development[J]. Front Neurosci, 2019, 13: 431. [66] Mercier E, Tardif P-A, Cameron PA, et al.Prognostic value of S-100β pro- tein for prediction of post-concussion symptoms after a mild trau- matic brain injury: systematic review and meta-analysis[J]. J Neurotrauma, 2018, 35(4): 609-622. [67] Mercier E, Tardif P-A, Cameron PA, et al.Prognostic value of neuron-specific enolase (NSE) for prediction of post-concussion symptoms following a mild traumatic brain injury: a systematic review[J]. Brain Inj, 2018, 32(1): 29-40. [68] Watt SE, Shores EA, Baguley IJ, et al.Protein S-100 and neuropsychological functioning following severe traumatic brain injury[J]. Brain Inj, 2006, 20(10): 1007-1017. [69] Marchi N, Bazarian JJ, Puvenna V, et al.Consequences of repeated blood-brain barrier disruption in football players[J]. PLoS ONE, 2013, 8(3): e56805. [70] Yi L, Shi S, Wang Y, et al.Serum metabolic profiling reveals altered metabolic pathways in patients with post-traumatic cognitive impairments[J]. Sci Rep, 2016, 6: 21320. [71] Carteron L, Bouzat P, Oddo M.Cerebral microdialysis monitoring to improve individualized neurointensive care therapy: an update of recent clinical data[J]. Front Neurol, 2017, 8: 601. [72] Puccio AM, Hoffman LA, Bayir H, et al.Effect of short periods of normobaric hyperoxia on local brain tissue oxygenation and cerebrospinal fluid oxidative stress markers in severe traumatic brain injury[J]. J Neurotrauma, 2009, 26(8): 1241-1249. [73] Olivecrona M, Rodling-Wahlström M, Naredi S, et al.S-100B and neuron specific enolase are poor outcome predictors in severe traumatic brain injury treated by an intracranial pressure targeted therapy[J]. J Neurol Neurosurg Psychiatry, 2009, 80(11): 1241-1247. [74] Hendoui N, Beigmohammadi MT, Mahmoodpoor A, et al.Reliability of calcium-binding protein S100B measurement toward optimization of hyperosmolal therapy in traumatic brain injury[J]. Eur Rev Med Pharmacol Sci, 2013, 17(4): 477-485. [75] Shore PM, Thomas NJ, Clark RSB, et al.Continuous versus intermittent cerebrospinal fluid drainage after severe traumatic brain injury in children: effect on biochemical markers[J]. J Neurotrauma, 2004, 21(9): 1113-1122. [76] Tanguy M, Seguin P, Laviolle B, et al.Cerebral microdialysis effects of propofol versus midazolam in severe traumatic brain injury[J]. J Neurotrauma, 2012, 29(6): 1105-1110. [77] Mahmoodpoor A, Shokouhi G, Hamishehkar H, et al.A pilot trial of l-carnitine in patients with traumatic brain injury: effects on biomarkers of injury[J]. J Crit Care, 2018, 45:128-132. [78] Hellewell SC, Mondello S, Conquest A, et al.Erythropoietin does not alter serum profiles of neuronal and axonal biomarkers after traumatic brain injury: findings from the Australian EPO-TBI clinical trial[J]. Crit Care Med, 2018, 46(4): 554-561. [79] Poon W, Vos P, Muresanu D, et al.Cerebrolysin Asian Pacific trial in acute brain injury and neurorecovery: design and methods[J]. J Neurotrauma, 2015, 32(8): 571-580. [80] Rosato A, Tenori L, Cascante M, et al.From correlation to causation: analysis of metabolomics data using systems biology approaches[J]. Metabolomics, 2018, 14(4): 37. [81] Lai X, Wolkenhauer O, Vera J .Understanding microRNA-mediated gene regulatory networks through mathematical modelling[J]. Nucleic Acids Res, 2016, 44(13): 6019-6035. |
[1] | CHEN Xiao-chen, REN Xue-jiao, Gao Wei-wei, YUE Shu-yuan. Studies on the role of progesterone in the regulation of immune inflammation and the improvement of prognosis in traumatic brain injury [J]. Lingnan Modern Clinics in Surgery, 2020, 20(01): 84-92. |
[2] | WANG Huanyu, LIU Baolong, WANG Hong. Neuroprotective effect of ketone metabolism on brain during times of traumatic brain injury [J]. Lingnan Modern Clinics in Surgery, 2016, 16(03): 351-354. |
[3] | Zeng Fan, Cheng Yanzi, Zhao Ling. Clinical outcomes of early enteral nutrition on severe traumatic brain injury patients with stress hyperglycaemia in acute stage [J]. Lingnan Modern Clinics in Surgery, 2015, 15(05): 575-578. |
[4] | Feng Jianhang, Li Jianhua, Lin Qiurun, Wu Yiyi, Hu Juqiang, Li Huiyi, Zhang Yuan. Value of transcranial Doppler in the prognosis of sever traumatic brain injury [J]. Lingnan Modern Clinics in Surgery, 2015, 15(03): 290-293. |
[5] | Feng Jianhang,Li Jianhua,Lin Qiurun,Wu Yiyi,Hu Juqiang,Li Huiyi,Zhang Yuanhong. Prospective study of the intensive insulin therapy for severe traumatic brain injury [J]. Lingnan Modern Clinics in Surgery, 2015, 15(02): 175-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||