Lingnan Modern Clinics In Surgery ›› 2022, Vol. 22 ›› Issue (02): 143-153.DOI: 10.3969/j.issn.1009-976X.2022.02.006
• Original Articles and Clinical Research • Previous Articles Next Articles
ZHOU Bing-kun1,2, WANG Bo1,2, HE Qing-qing1,2, HUANG Xiao-dong1,2, CHEN Jun-yu1,2, HUANG Jian1,2,*
Contact:
HUANG Jian,huangj8@mail.sysu.edu.cn
周炳坤1,2, 王博1,2, 贺情情1,2, 黄孝东1,2, 陈俊宇1,2, 黄健1,2,*
通讯作者:
*黄健,Email:huangj8@mail.sysu.edu.cn
基金资助:
CLC Number:
ZHOU Bing-kun, WANG Bo, HE Qing-qing, HUANG Xiao-dong, CHEN Jun-yu, HUANG Jian. Tumor microenvironment for effective bladder cancer immunotherapy and its composition in human and mouse tumors: a preliminary report[J]. Lingnan Modern Clinics In Surgery, 2022, 22(02): 143-153.
周炳坤, 王博, 贺情情, 黄孝东, 陈俊宇, 黄健. 膀胱癌免疫治疗相关肿瘤微环境及其在人和小鼠肿瘤中的组成特征初探[J]. 岭南现代临床外科, 2022, 22(02): 143-153.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.lingnanwaike.com/EN/10.3969/j.issn.1009-976X.2022.02.006
[1] Kaufman DS, Shipley WU, Feldman AS.Bladder cancer[J]. Lancet, 2009,374(9685): 239-249. [2] Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021,71(3): 209-249. [3] Lenis AT, Lec PM, Chamie K, et al.Bladder Cancer: A Review[J]. JAMA, 2020,324(19): 1980-1991. [4] Topalian SL, Hodi FS, Brahmer JR, et al.Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012,366(26): 2443-2454. [5] Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma[J]. N Engl J Med, 2017,376(11): 1015-1026. [6] Balar AV, Castellano D, O′Donnell PH, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study[J]. Lancet Oncol, 2017,18(11): 1483-1492. [7] Powles T, O′Donnell PH, Massard C, et al. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results From a Phase 1/2 Open-label Study[J]. JAMA Oncol, 2017,3(9): e172411. [8] Anderson NM, Simon MC.The tumor microenvironment[J]. Curr Biol, 2020,30(16): R921-r925. [9] Petitprez F, Meylan M, de Reyniès A, et al. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies[J]. Front Immunol, 2020,11: 784. [10] Binnewies M, Roberts EW, Kersten K, et al.Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018,24(5): 541-550. [11] Cózar B, Greppi M, Carpentier S, et al.Tumor-Infiltrating Natural Killer Cells[J]. Cancer Discov, 2021,11(1): 34-44. [12] Laumont CM, Banville AC, Gilardi M, et al.Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities[J]. Nat Rev Cancer, 2022. [13] Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability [J]. Cell Metab, 2021,33(5): 1001-1012.e1005. [14] Helmink BA, Reddy SM, Gao J, et al.B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020,577(7791): 549-555. [15] Tumeh PC, Harview CL, Yearley JH, et al.PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014,515(7528): 568-571. [16] Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol, 2018,19(1): 40-50. [17] Harper J, Sainson RC.Regulation of the anti-tumour immune response by cancer-associated fibroblasts[J]. Semin Cancer Biol, 2014,25: 69-77. [18] Fiori ME, Di Franco S, Villanova L, et al.Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance[J]. Mol Cancer, 2019,18(1): 70. [19] O′Connell JT, Sugimoto H, Cooke VG, et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization[J]. Proc Natl Acad Sci U S A, 2011,108(38): 16002-16007. [20] Balar AV, Galsky MD, Rosenberg JE, et al.Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial[J]. The Lancet, 2017,389(10064): 67-76. [21] Zeng D, Ye Z, Shen R, et al.IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures[J]. Front Immunol, 2021,12: 687975. [22] Miyamoto H, Yang Z, Chen YT, et al.Promotion of bladder cancer development and progression by androgen receptor signals[J]. J Natl Cancer Inst, 2007,99(7): 558-568. [23] 王博, 林建勋, 于浩, 等. CD8+ T细胞的分布特征及其与膀胱癌预后关系的研究[J]. 中华泌尿外科杂志, 2015, (7): 500-504. [24] Raskov H, Orhan A, Christensen JP, et al.Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy[J]. Br J Cancer, 2021,124(2): 359-367. [25] Raskov H, Orhan A, Salanti A, et al.Natural Killer Cells in Cancer and Cancer Immunotherapy[J]. Cancer Lett, 2021,520: 233-242. [26] Gentles AJ, Newman AM, Liu CL, et al.The prognostic landscape of genes and infiltrating immune cells across human cancers[J]. Nat Med, 2015,21(8): 938-945. [27] Goode EL, Block MS, Kalli KR, et al.Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer[J]. JAMA Oncol, 2017,3(12): e173290. [28] Pernot S, Terme M, Radosevic-Robin N, et al.Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance[J]. Gastric Cancer, 2020,23(1): 73-81. [29] Han S, Zhang C, Li Q, et al.Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma[J]. Br J Cancer, 2014,110(10): 2560-2568. [30] Mahmoud SM, Paish EC, Powe DG, et al.Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer[J]. J Clin Oncol, 2011,29(15): 1949-1955. [31] Galon J, Bruni D.Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019,18(3): 197-218. [32] Sato E, Olson SH, Ahn J, et al.Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer[J]. Proc Natl Acad Sci U S A, 2005,102(51): 18538-18543. [33] Schumacher K, Haensch W, Röefzaad C, et al.Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas[J]. Cancer Res, 2001,61(10): 3932-3936. [34] Chen J, Zhong W, Yang M, et al.Development and validation of a PD-L1/PD-1/CD8 axis-based classifier to predict cancer survival of upper tract urothelial carcinoma after radical nephroureterectomy[J]. Cancer Immunol Immunother, 2021,70(9): 2657-2668. [35] Schumacher TN, Schreiber RD.Neoantigens in cancer immunotherapy[J]. Science, 2015,348(6230): 69-74. [36] Lee JS, Ruppin E.Multiomics Prediction of Response Rates to Therapies to Inhibit Programmed Cell Death 1 and Programmed Cell Death 1 Ligand 1[J]. JAMA Oncol, 2019,5(11): 1614-1618. [37] Chen X, Xu R, He D, et al.CD8(+) T effector and immune checkpoint signatures predict prognosis and responsiveness to immunotherapy in bladder cancer[J]. Oncogene, 2021,40(43): 6223-6234. [38] Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy [J]. Immunity, 2019,50(1): 195-211.e110. [39] Lee H, Quek C, Silva I, et al.Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients[J]. Oncoimmunology, 2019,8(2): e1537581. [40] Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M, et al. A Gene Signature Predicting Natural Killer Cell Infiltration and Improved Survival in Melanoma Patients[J]. Cancer Immunol Res, 2019,7(7): 1162-1174. [41] López-Soto A, Gonzalez S, Smyth MJ, et al.Control of Metastasis by NK Cells[J]. Cancer Cell, 2017,32(2): 135-154. [42] Hsu J, Hodgins JJ, Marathe M, et al.Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade[J]. J Clin Invest, 2018,128(10): 4654-4668. [43] Prat A, Navarro A, Paré L, et al.Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma[J]. Cancer Res, 2017,77(13): 3540-3550. [44] Mazzaschi G, Facchinetti F, Missale G, et al.The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC[J]. Lung Cancer, 2019,127: 153-163. [45] Barry KC, Hsu J, Broz ML, et al.A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments[J]. Nat Med, 2018,24(8): 1178-1191. [46] Mao X, Xu J, Wang W, et al.Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021,20(1): 131. [47] Calon A, Lonardo E, Berenguer-Llergo A, et al.Stromal gene expression defines poor-prognosis subtypes in colorectal cancer[J]. Nat Genet, 2015,47(4): 320-329. [48] Comito G, Giannoni E, Segura CP, et al.Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression[J]. Oncogene, 2014,33(19): 2423-2431. [49] Frings O, Augsten M, Tobin NP, et al.Prognostic significance in breast cancer of a gene signature capturing stromal PDGF signaling[J]. Am J Pathol, 2013,182(6): 2037-2047. [50] Derynck R, Turley SJ, Akhurst RJ.TGFβ biology in cancer progression and immunotherapy[J]. Nat Rev Clin Oncol, 2021,18(1): 9-34. [51] Chakravarthy A, Khan L, Bensler NP, et al.TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure[J]. Nat Commun, 2018,9(1): 4692. [52] Barrett RL, Puré E.Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy[J]. eLife, 2020,9. [53] Diaz-Montero CM, Finke J, Montero AJ.Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications[J]. Semin Oncol, 2014,41(2): 174-184. [54] Ford K, Hanley CJ, Mellone M, et al.NOX4 Inhibition Potentiates Immunotherapy by Overcoming Cancer-Associated Fibroblast-Mediated CD8 T-cell Exclusion from Tumors[J]. Cancer Res, 2020,80(9): 1846-1860. [55] Oliveira PA, Arantes-Rodrigues R, Vasconcelos-Nóbrega C.Animal models of urinary bladder cancer and their application to novel drug discovery[J]. Expert Opin Drug Discov, 2014,9(5): 485-503. [56] Zuiverloon TCM, de Jong FC, Costello JC, et al. Systematic Review: Characteristics and Preclinical Uses of Bladder Cancer Cell Lines[J]. Bladder Cancer, 2018,4(2): 169-183. [57] Chan E, Patel A, Heston W, et al.Mouse orthotopic models for bladder cancer research[J]. BJU International, 2009,104(9): 1286-1291. [58] Robertson AG, Kim J, Al-Ahmadie H, et al.Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer[J]. Cell, 2018,174(4): 1033. [59] Leblond MM, Tillé L, Nassiri S, et al.CD40 Agonist Restores the Antitumor Efficacy of Anti-PD1 Therapy in Muscle-Invasive Bladder Cancer in an IFN I/II-Mediated Manner[J]. Cancer Immunol Res, 2020,8(9): 1180-1192. [60] Fantini D, Glaser AP, Rimar KJ, et al.A Carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer[J]. Oncogene, 2018,37(14): 1911-1925. |
[1] | WANG Long, WANG Jian, TONG Fa-chun, ZHAI Cheng-xi, LIU Yun-zan, DENG Ren-qiang, WANG Bin. Efficacy of gemcitabine bladder perfusion in the treatment of non-muscular invasive bladder cancer and the effect of serum VEGF [J]. Lingnan Modern Clinics In Surgery, 2021, 21(04): 441-444. |
[2] | HUO Li-yun, WEI Ying-cheng, TAN Wen-liang, SHANG Chang-zhen, CHEN Ya-jin. The clinical significance of SMC gene family in the diagnosis and prognosis of hepatocellular carcinoma [J]. Lingnan Modern Clinics In Surgery, 2021, 21(01): 24-28. |
[3] | CHEN Xing-sheng, HE Ming-liang, LIU An-min. Glioma cells suppress the maturation of dendritic cells by upregulating the level of thrombospodin-1 [J]. Lingnan Modern Clinics in Surgery, 2020, 20(02): 133-138. |
[4] | CHEN Jingsen, OU Xi, ZHAO Yang, YU Guangyin, LIU Xiaoping. Distribution characteristics of LAP+CD4+T cells in the tumor microenvironment of hepatocellular carcinoma and its significance [J]. Lingnan Modern Clinics in Surgery, 2019, 19(05): 528-532. |
[5] | LI Yong, XIE Mingwei, SHI Guangzi, PAN Heng, LI Guozhao, YI Zhilong. The value of diffusion-weighted magnetic resonance imaging in differential diagnosis of benign and malignant gallbladder lesions [J]. Lingnan Modern Clinics in Surgery, 2019, 19(05): 541-543. |
[6] | LUO Jianwei, ZENG Jianfeng. Beneficial effect of fluid warming in elderly patients with bladder cancer undergoing Da Vinci robotic-assisted laparoscopic radical cystectomy [J]. Lingnan Modern Clinics in Surgery, 2019, 19(05): 614-618. |
[7] | ZHUO Xianhua, WAN Yunle. The value of diffusion-weighted magnetic resonance imaging in differential diagnosis of benign and malignant gallbladder lesions [J]. Lingnan Modern Clinics in Surgery, 2019, 19(05): 513-519. |
[8] | LUO Jianwei1, HUANG Haiming1, HUANG Lijuan2, WEI Fuwang1. Effect of intraoperative warming infusion on temperature and coagulation function in patients undergoing robot?assisted laparoscopic radical surgery for bladder cancer [J]. Lingnan Modern Clinics in Surgery, 2019, 19(03): 329-332. |
[9] | CHEN Ziyue, WU Yaohao, ZENG Lexiang, QIU Ronglin, ZHOU Jiajia, ZHANG Jie, DENG Xiaogeng . Identification of differentially expressed genes in Hepatoblastoma using bioinformatics analysis [J]. Lingnan Modern Clinics in Surgery, 2018, 18(02): 128-132. |
[10] | SHI Siya,ZHU Wangshu,LI Yong. The imaging diagnosis of metastases in pelvic lymph nodes in patients with bladder cancer [J]. Lingnan Modern Clinics in Surgery, 2017, 17(01): 113-118. |
[11] | CHEN Jinglin, HUANG Yanson, ZENG Jincheng, CAI Haipeng. Expression of PTEN and Beclin1 in bladder cancer patients [J]. Lingnan Modern Clinics in Surgery, 2016, 16(02): 219-222. |
[12] | JU Banglv, CHEN Yongbing, ZHANG Weiyi, YU Conghui, YU Changzhong, NIE Hongfeng. Value of occult pancreaticobiliary reflux on early diagnosis for patients with gallbladder cancer [J]. Lingnan Modern Clinics in Surgery, 2016, 16(01): 21-23. |
[13] | Peng Yang, Zhong Guangzheng, Dong Wen, Lin Tianxin. The migration and invasion promoting effects of microRNA-155 on bladder cancer cell line of um-uc-3 [J]. Lingnan Modern Clinics in Surgery, 2015, 15(01): 1-5. |
[14] | Zhong Guangzheng, Peng Yang, He Wang, Lin Tianxin. Inhibitory effects of microRNA-449a on migratory ability of bladder tumor cell line J82 by targeting Notch1 [J]. Lingnan Modern Clinics in Surgery, 2014, 14(03): 230-234. |
[15] | Wang Pei, Jiang Chun, He Wang, Ling Tianxin, Huang Jian. The impact of MALAT1 on cellular function of bladder cancer cell line UMUC3 and its downstream target genes [J]. Lingnan Modern Clinics in Surgery, 2014, 14(02): 122-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||