岭南现代临床外科 ›› 2019, Vol. 19 ›› Issue (06): 673-678.DOI: 10.3969/j.issn.1009?976X.2019.06.005
刘远芳, 曾伟科, 邓虹, 胡辉军, 杨泽宏, 沈君*
LIU Yuanfang, ZENG Weike, DENG Hong, HU Huijun, YANG Zehong, SHEN Jun*
摘要:
直肠癌是消化系统常见的恶性肿瘤之一,近年来其发病率及死亡率逐渐升高[1]。临床上,直肠癌的治疗手段以手术切除为主,根据不同的TNM分期采用不同的手术方案。目前,对于T3-4或N1-2距肛缘小于12 cm的直肠癌,为提高手术切除率、保肛率以及延长患者无病生存期,推荐术前进行新辅助放化疗,降低术后复发的风险[2]。因此,不仅术前直肠癌患者的T分期十分重要,对区域淋巴结转移与否的评估也能直接指导治疗方案的制定,并能用于预测预后。目前直肠癌术前常采用多层螺旋CT(multi-slice computed tomography,MSCT)、磁共振成像(magnetic sonance imaging,MRI)、正电子断层成像(positron electron tomography,PET)等影像学检查方法进行术前分期评估[3],其中MSCT能够快速、薄层扫描全腹部,并具有强大的图像后处理能力,已成为直肠癌术前临床分期和制定手术方案的常用手段[4]。MSCT能有效评估直肠癌的浸润深度(T分期),但传统的单能MSCT主要依靠淋巴结大小诊断淋巴结转移,其准确率不高,仅为59%~80%,MSCT术前诊断区域淋巴结转移的准确性有待提高[5,6]。相对于传统的单能MSCT,双能CT(Dual energy CT,DECT)具有其独特的单能量成像、物质分离及定量分析处理技术[7],研究表明[8-11],DECT的定量参数碘浓度(iodine concentration,IC)、能谱衰减曲线斜率(slope of spectral Hounsfield unit curve,λHu)及有效原子序数(effective atomic number,Zeff)能够用于腮腺、肺等脏器的良恶性肿瘤鉴别诊断,胃癌区域淋巴结转移的预测及颈部淋巴结良恶性的鉴别。然而,DECT定量参数用于预测直肠癌区域淋巴结转移的研究较少,对于有关DECT参数用于鉴别直肠癌区域淋巴结良恶性既往有一些报道[12-14]。本研究采取前瞻性队列研究,收集直肠癌患者进行三期增强DECT检查,旨在通过大样本探讨DECT定量参数在术前诊断直肠癌区域淋巴结转移中的价值。
采用前瞻性队列研究,收集2015年5月至2017年5月中山大学孙逸仙纪念医院收治的直肠癌患者,病例入选需满足以下条件:①已经内镜活检证实为直肠癌拟进行手术治疗患者,接受胸腹部CT检查进行术前评估;②无严重心、脑、肾功能不全等疾病;③无碘对比剂过敏史。排除标准:①既往放疗、化疗或放化疗;②晚期肿瘤无手术切除(根据2012版AJCC的TNM分期为IV期患者);③在CT检查上无目标淋巴结及可测淋巴结(淋巴结短轴径线<3 mm);④CT检查禁忌(如怀孕或骨盆金属植入),无法提供知情同意;⑤合并有甲亢、糖尿病、肝肾功能障碍以及其他恶性疾病。符合上述条件的患者有97例,其中7例因无目标淋巴结或可测淋巴结(n=3),或未行手术切除(n=4)而被排除,最终90例直肠癌患者纳入研究,其中男55例,女35例,年龄33~86岁,平均年龄58.78±11.55岁。本研究通过中山大学孙逸仙纪念医院伦理委员会审批。患者及家属均签署术前相关检查和手术知情同意书。见表1。
本次2 000 例筛选对象中,1 008例低危人群,占50.40%(1 008/2 000 );517例中危人群,占20.85%(517/2 000);475例高危人群,占23.75%(475/2 000 )。
即使我以身犯险,冲上去,凭我这点力气能抓住她吗?如果我明知自己太弱帮不上忙,还努力去帮她,这值不值得呢?
表1 90例直肠癌患者的临床病理
DECT检查采用GE公司宝石能谱64排CT(Discovery CT750HD,GE-Healthcare,美国),所有病例术前一周内进行DECT检查,CT检查前12小时口服洁肠制剂聚乙二醇电解质溶液,CT检查前1小时口服1000 mL 2.5%甘露醇溶液进行肠道准备。检查时患者平卧,训练患者屏气,进行常规平扫及双能量三期动态增强扫描。平扫管电压为120 kVp,管电流为350 mAs;利用宝石能谱成像模式(gemstone spectral imaging,GSI)行双能量三期增强扫描,管电压80~140 kVp瞬时0.5 ms切换模式,管电流为 375 mAs,准直 64 mm×0.6 mm,转速0.7 s/r,螺距0.984,重建轴位图像,层厚为1.25 mm,层间隔为1 mm,视野为35 cm,矩阵为512×512;采用标准算法重建CT平扫数据,选择50%ASiR(自适应统计迭代重建技术)重建三期增强数据。增强扫描时使用对比剂自动跟踪触发启动扫描,触发点为右膈顶水平腹主动脉,触发阈值100 Hu,延迟7.6 s后行动脉期(A)扫描,动脉期扫描后延迟18 s行门静脉期(P)扫描,门静脉期扫描后延迟45 s行平衡期(E)扫描;采用双筒高压注射器经肘静脉团注碘海醇(350 mgI/mL,GE Healthcare),剂量1.5 mL/kg,设定对比剂流速4.0 mL/s,然后以相同的流速注射50 mL生理盐水。
DECT与传统的单能CT不同,通过单球管的瞬时切换电压,实现能谱成像,除了能提供组织器官解剖信息及疾病的形态学信息外,还能提供多个定量参数实现物质成分的定性分离和定量测定,用于鉴别组织或病变的组成成分,帮助疾病的诊断与鉴别诊断,提高影像诊断的准确度[7,12]。本研究在直肠癌患者中术前分期时采用DECT测量区域淋巴的DECT定量参数,发现转移性淋巴结的肝动脉期及门静脉期DECT定量参数nIC、nZeff、λHu及平衡期nIC、nZeff均低于非移性淋巴结,这与以往的研究[9,12,13]结果一致。CT增强检查,通过碘对比剂在血管内外的渗透与返流,可以反映组织血容量或血管通透性的病理生理变化。非转移性淋巴结的微血管明显增多且多于转移性淋巴结,而转移性淋巴结的新生血管以大血管为主且分布不均匀,这些血管虽然可以被彩色多普勒检测到,但CT增强扫描没有明显的强化[17]。Naresh等[18]报道,转移性淋巴结中血管内皮细胞生长因子表达低,其微血管密度减低;而正常淋巴结本身具有丰富的血管分布,转移性肿瘤的生长并不需要额外的血管。淋巴结微血管密度的差别可能是导致转移性淋巴结的DECT定量参数低于非转移性淋巴结。
使用R3.5.0软件(R Project)进行LASSO回归和ROC分析,其他统计分析采用SPSS 24.0软件(BM SPSS)进行。淋巴结大小、DECT定量参数用均数±标准差(x±s)表示。采用组内相关系数(ICC)评价两名放射科医师参数测量的观察者间一致性。对转移性和非转移性淋巴结在短径、nIC、nZeff和λHu分别进行方差齐性分析,进行独立样本t检验分析。比较不同性质淋巴结之间短径、nIC、nZeff和λHu之间存在的差异,P<0.05为差异有统计学意义。再用LASSO回归模型进行多变量logistic回归分析,确定能预测转移性淋巴结的独立参数。采用受试者工作特征曲线(ROC)分析最小短径与DECT参数的诊断效能,计算曲线下面积(area under curve,AUC),根据Youden指数选择诊断阈值,评估淋巴结短径和DECT参数对直肠癌区域淋巴结转移的诊断效能。
所有患者均进行了手术切除治疗。由外科医生根据术前CT定位的最大淋巴结在术中或术后标本上进行标记。定位时参考最大淋巴结的大小,及其与原发肿瘤、直肠系膜及筋膜、肠系膜下动脉等解剖标志的距离。所有切除标本均进行常规的组织学检查病理分析,记录原发肿瘤和所有淋巴结的病理结果。
经过校准系统测量得到接收通道频率响应后,结合式(6)~(8)可求解接收通道特性对理想信号测距的影响,考虑到每颗卫星伪码特性并不完全一致,遍历仿真所有卫星的理想伪码求解其S曲线过零点偏差,得到最大测距偏差如下表所示:
ROC曲线分析显示,淋巴结短径诊断转移性淋巴结的准确率为74.4%,敏感度为61.1%,特异度为83.3%,AUC为0.714;nZeff-P诊断转移性淋巴结的准确率为83.3%,敏感度为69.4%,特异度为92.6%,AUC为0.851(表3、图3)。nZeff-P的诊断效能高于淋巴结短径。
转移性淋巴结与非转移性淋巴结之间淋巴结短径及DECT定量参数见表2、图1-2。ICC分析表明两名放射科医师之间的测量结果具有良好的一致性(ICC=0.823~0.928)。90例患者共选取90枚最大淋巴结,其中36枚为转移性,54枚为非转移性。转移性淋巴结短径为8.32±2.86 mm,非转移性淋巴结短径为6.37±1.74 mm,两者之间具有统计学差异(P<0.05)。转移性淋巴结与非转移性淋巴结的肝动脉期、门静脉期nIC、nZeff、λHu及平衡期nIC、nZeff差异均具有统计学意义(P<0.05),转移性淋巴结DECT定量参数均低于非转移性淋巴结(P<0.05)。对差异有统计学意义的DECT定量参数采用LASSO回归分析,仅门静脉期nZeff(nZeff-P)为预测淋巴结转移的独立参数(P<0.05)。
表2 转移性淋巴结与非转移性淋巴结的比较(x±s)
注:nIC为标准化碘浓度,λHu为能谱曲线斜率,nZeff为标准化有效原子序数;A为肝动脉期,P为门静脉期,E为平衡期
图1 女,56岁,直肠中分化腺癌(T4N1),转移性淋巴结双能CT图像 左侧为门静脉期70 KeV单能量图片,箭头所指为区域最大淋巴结,圆形实线框代表测量的区域(ROI),右边9个小图为左侧图像虚线框区域放大的图片,分别为动脉期(A)、门静脉期(P)及平衡期(E)的70 KeV单能量图、碘(水)图(IC)以及有效原子序数(Zeff)。转移性淋巴结呈类圆形,边界尚清,增强扫描三期显示密度欠均匀。短径:9.2 mm。ROI面积:48.72 mm2。碘浓度(IC),IC-A:1.10 mg/cm2;IC-P:1.90 mg/cm3;IC-E:2.56 mg/cm3。有效原子序数(Zeff),Zeff-A:8.24;Zeff-P:8.7;Zeff-E:9.06。(λHu-A:2.34 ;λHu-P:3.90;λHu-E:5.10)
图2 女,42岁,直肠中分化腺癌(T3N0),非转移性淋巴结双能CT图像 左侧为门静脉期70 KeV单能量图片,箭头所指为区域最大淋巴结,圆形实线框代表测量的区域(ROI),右边9个小图为左侧图像虚线框区域放大的图片,分别为动脉期(A)、门静脉期(P)及平衡期(E)的70KeV单能量图、碘(水)图(IC)以及有效原子序数(Zeff)。非转移性淋巴结呈类椭圆形,边界清,增强扫描三期显示密度均匀,强化程度较图1淋巴结明显。短径:6.2 mm。ROI面积:26.48 mm2。碘浓度(IC),IC-A:2.05 mg/cm3;IC-P:3.00 mg/cm3;IC-E:2.55mg/cm3。有效原子序数(Zeff),Zeff-A:8.76;Zeff-P:9.23;Zeff-E:8.99(λHu-A:4.19;λHu-P:6.00;λHu-E:5.16)
表3 淋巴结短径及定量参数nZeff-P诊断效能对比
注:CI为置信区间;nZeff-P为肝门脉期标准化有效原子序数
图3 淋巴结短径以及nZeff-P的ROC曲线
直肠癌淋巴结转移的术前准确评估对于决定治疗策略,如是否在手术切除前进行新辅助化疗,以及预测预后至关重要。常规MSCT预测直肠癌区域淋巴结转移主要依赖于淋巴结形态学特征及短径标准。形态学特征包括淋巴结呈圆形或卵圆形,有无淋巴结门存在,有无不均匀强化,强化的程度,这些指标均是主观评价,受影响因素较多。淋巴结短径标准作为定量指标,属于客观指标。然而,淋巴结短径作为诊断标准,采用具体的数值大小,至今无统一的认识,其准确率也不高[6,15,16]。目前在临床实践常用短径标准为大于1 cm的淋巴结或小于1 cm的3个或3个以上淋巴结成簇分布作为形态学诊断标准。本研究结果显示淋巴结短径诊断阈值为7.70 mm,其诊断的准确率为74.4%,这与既往报道[6]以淋巴结短径诊断阈值10 mm诊断转移性淋巴结的准确率约59%~71%相近。本研究显示以诊断阈值为7.70 mm敏感度和特异度分别为61.1%和83.3%,与之前报道[15]的淋巴结短轴直径临界值为5 mm的敏感度和特异度别为66.7%和87.5%相近。既往文献报道以淋巴结短径大于8 mm作为临界值,诊断敏感度和特异度85.7%和91.7%[16]。综合本研究结果及既往研究结果,以短径作为淋巴结转移的诊断标准,仍缺乏广泛的共识,其临床应用价值仍然有限。
将DECT数据传输到工作站(AW 4.6,GE Healthcare),由两名高年资放射科医生(10年以上的CT诊断工作经验),利用GSIviewer独立进行分析,首先参考既往报道的方法[13],在70 keV单能量门静脉期增强图像上结合多平面重组技术标记出最大的淋巴结,测量淋巴结短径,采用感兴趣区测量最大淋巴结和主动脉(右肾动脉分支水平)的碘浓度(IC)、有效原子序数(Zeff)及能谱衰减曲线斜率(λHu)。感兴趣勾画时,尽可能覆盖整个淋巴结及腹主动脉,避开周围的脂肪、血管、坏死、钙化。分别得到淋巴结和相应腹主动脉的IC(mg/mL)和Zeff。为了尽量减少心输出量对淋巴结 IC 测量的影响[8,12,13],利用公式 nIC=ICLN/ICaorta和nZeff=Zeff-LN/Zeff-aorta计算淋巴结的标准化碘浓度(normalized IC,nIC)和标准化有效原子序数(normalized Zeff,nZeff),ICLN、Zeff-LN分别为淋巴结的IC 及 Zeff;ICaorta、Zeff-aort分别为主动脉的 IC 及 Zeff。取两名放射科医生的测量值的平均值用于统计学分析。
在众多的DECT定量参数中,本研究通过LASSO回归进一步分析发现门脉期nZeff是预测淋巴结转移的独立参数,ROC分析显示其诊断淋巴结转移的敏感度为69.4%,特异度为92.4%,准确率高达83.3%,AUC达到0.851,而淋巴结短径诊断淋巴结转移的敏感度为61.1%,特异度为83.3%,准确率为74.4%,AUC达到0.714。这些结果表明门脉期nZeff在直肠癌区域淋巴结转移的诊断中其诊断效能优于淋巴结短径。DECT的Zeff是从原子序数引申而来的一个新概念,表示化合物或混合物中各种材料的复合原子序数,是代表物质组成成分的另一个特征性参数,可用于对物质化学组成成分进行更准确分析[19]。基于碘对比剂增强CT的Zeff不仅反映了转移性淋巴结摄取碘成分的多少,还反映了转移淋巴结组织构成的成分,其更能反映组织的病理生理结构与特点。既往研究[11,19]也发现Zeff能用于鉴别肺部、甲状腺良恶性结节的鉴别诊断。这些结果提示Zeff不仅可用于鉴别肿瘤良恶性,还可以用于区域淋巴结转移的检测。
本研究存在一定的局限性。首先,直肠癌周围的淋巴结数目众多,难以做到影像-病例的一一匹配。为能够进行影像-病理精确的一对一的匹配,本研究每个病例选择单个区域最大淋巴结,明确DECT诊断淋巴结转移的性能。单个最大淋巴结在影像学、手术中及术后病理检查都容易识别。既往的相关研究采用将区域淋巴结按照解剖分布分成四个区域[12]进行评估,以解决影像-病理精准匹配的问题;将区域淋巴结划分四个区域的方法进行影像-病理对照,方法较为粗糙,分析结果偏差大。其次,本研究未对直肠癌分化程度及病理类型的进行细分类,由于本研究聚焦于转移淋巴结与非转移淋巴结DECT定量参数之间的差异性,DECT定量参数能否预测不同分化程度及不同病理类型直肠癌病人的区域淋巴结转移有待于积累更多病例进一步深入研究。
伴随着我国电子商务的迅速成长,快递企业同时也面临着各种难题与挑战,快递企业的发展速度服务水平以及服务质量等各种因素已经成为阻碍电子商务发展的重要因素。因此探索电子商务环境下民营快递企业的发展规律和发展趋势对于促进电商物流的发展有重大现实意义。
综上所述,DECT定量参数可用于术前区分直肠癌区域转移性和非转移性淋巴结。与传统的淋巴结短径相比,DECT定量参数门静脉期nZeff具有更高的诊断效能。DECT有助于直肠癌术前的评估,能够提高直肠癌术前区域淋巴转移预测的准确性,从而为直肠癌治疗方案的决策提供更重要的依据。
[1] Deng Y.Rectal Cancer in Asian vs.Western Countries:Why the Variation in Incidence[J]? Curr Treat Options Oncol,2017,18(10):64.
[2] 国家卫生计生委医政医管局,中华医学会肿瘤学分会.中国结直肠癌诊疗规范(2017年版)[J].中华普通外科学文献(电子版),2018,12(3):145-159.
[3] Baessler B,Maintz D,Persigehl T.Imaging Procedures for Colorectal Cancer[J].Visc Med,2016,32(3):166-171.
[4] Choi J,Oh SN,Yeo D-M,et al.Computed tomography and magnetic resonance imaging evaluation of lymph node metastasis in early colorectal cancer [J].World J Gastroenterol,2015,21(2):556-562.
[5] Filippone A,Ambrosini R,Fuschi M,et al.Preoperative T and N staging of colorectal cancer:accuracy of contrast-enhanced multi-detector row CT colonography-initial experience[J].Radiology,2004,231(1):83-90.
[6] Kijima S,Sasaki T,Nagata K,et al.Preoperative evaluation of colorectal cancer using CT colonography,MRI,and PET/CT[J].World JGastroenterol,2014,20(45):16964-16975.
[7] Goo HW,Goo JM.Dual-Energy CT:New Horizon in Medical Imaging[J].Korean JRadiol,2017,18(4):555-569.
[8] Li J,Fang M,Wang R,et al.Diagnostic accuracy of dual-energy CT-based nomograms to predict lymph node metastasis in gastric cancer[J].Eur Radiol,2018,28(12):5241-5249.
[9] Tawfik AM,Razek AA,Kerl JM,et al.Comparison of dual-energy CT-derived iodine content and iodine overlay of normal,inflammatory and metastatic squamous cell carcinoma cervical lymph nodes[J].Eur Radiol,2014,24(3):574-580.
[10]靳晓媛,刘斌,李红文,等.能谱CT鉴别诊断腮腺良恶性肿瘤[J].中国医学影像技术,2015,31(03):367-371.
[11]Gonzalez-Perez V,Arana E,Barrios M,et al.Differentiation of benign and malignant lung lesions:Dual-Energy Computed Tomography findings[J].Eur J Radiol,2016,85(10):1765-1772.
[12]Liu H,Yan F,Pan Z,et al.Evaluation of dual energy spectral CT in differentiating metastatic from non-metastatic lymph nodes in rectal cancer:Initial experience[J].Eur J Radiol,2015,84(2):228-34.
[13]Kato T,Uehara K,Ishigaki S,et al.Clinical significance of dual-energy CT-derived iodine quantification in the diagnosis of metastatic LN in colorectal cancer[J].Eur J Surg Oncol,2015,41(11):1464-70.
[14]杨雪君,赵卫,郑凌琳,等.双能量CT对结直肠癌区域淋巴结性质判定的临床研究[J].放射学实践,2016,31(10):957-960.
[15]Tanaka T,Nozawa H,Kawai K,et al.Lymph node size on computed tomography images is a predictive indicator for lymph node metastasis in patients with colorectal neuroendocrine tumors[J].In Vivo,2017,31(5):1011-1017.
[16]高靳,邹佳瑜,代茂良,等.结直肠癌N分期与淋巴结CT影像表现的多因素回归分析[J].实用放射学杂志,2014,8:1324-1327.
[17]Zenk J,Bozzato A,Greess H,et al.Metastatic and inflammatory cervical lymph nodes as analyzed by contrast-enhanced colorcoded doppler ultrasonography:quantitative dynamic perfusion patterns and histopathologic correlation[J].Ann Otol,Rhinol Laryngol,2005,114(1):43-47.
[18]Naresh KN,Nerurkar AY,Borges AM.Angiogenesis is redundant for tumour growth in lymph node metastases[J].Histopathology,2001,38(5):466-470.
[19]Li M,Zheng X,Li J,et al.Dual-energy computed tomography imaging of thyroid nodule specimens:comparison with pathologic findings[J].Invest Radiol,2012,47(1):58-64.
The value of dual-energy CT in preoperative diagnosis of regional lymph node metastasis in rectal cancer
中图分类号: