[1] Kaufman DS, Shipley WU, Feldman AS.Bladder cancer[J]. Lancet, 2009,374(9685): 239-249. [2] Sung H, Ferlay J, Siegel RL, et al.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021,71(3): 209-249. [3] Lenis AT, Lec PM, Chamie K, et al.Bladder Cancer: A Review[J]. JAMA, 2020,324(19): 1980-1991. [4] Topalian SL, Hodi FS, Brahmer JR, et al.Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012,366(26): 2443-2454. [5] Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma[J]. N Engl J Med, 2017,376(11): 1015-1026. [6] Balar AV, Castellano D, O′Donnell PH, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study[J]. Lancet Oncol, 2017,18(11): 1483-1492. [7] Powles T, O′Donnell PH, Massard C, et al. Efficacy and Safety of Durvalumab in Locally Advanced or Metastatic Urothelial Carcinoma: Updated Results From a Phase 1/2 Open-label Study[J]. JAMA Oncol, 2017,3(9): e172411. [8] Anderson NM, Simon MC.The tumor microenvironment[J]. Curr Biol, 2020,30(16): R921-r925. [9] Petitprez F, Meylan M, de Reyniès A, et al. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies[J]. Front Immunol, 2020,11: 784. [10] Binnewies M, Roberts EW, Kersten K, et al.Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018,24(5): 541-550. [11] Cózar B, Greppi M, Carpentier S, et al.Tumor-Infiltrating Natural Killer Cells[J]. Cancer Discov, 2021,11(1): 34-44. [12] Laumont CM, Banville AC, Gilardi M, et al.Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities[J]. Nat Rev Cancer, 2022. [13] Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability [J]. Cell Metab, 2021,33(5): 1001-1012.e1005. [14] Helmink BA, Reddy SM, Gao J, et al.B cells and tertiary lymphoid structures promote immunotherapy response[J]. Nature, 2020,577(7791): 549-555. [15] Tumeh PC, Harview CL, Yearley JH, et al.PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014,515(7528): 568-571. [16] Denkert C, von Minckwitz G, Darb-Esfahani S, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy[J]. Lancet Oncol, 2018,19(1): 40-50. [17] Harper J, Sainson RC.Regulation of the anti-tumour immune response by cancer-associated fibroblasts[J]. Semin Cancer Biol, 2014,25: 69-77. [18] Fiori ME, Di Franco S, Villanova L, et al.Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance[J]. Mol Cancer, 2019,18(1): 70. [19] O′Connell JT, Sugimoto H, Cooke VG, et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization[J]. Proc Natl Acad Sci U S A, 2011,108(38): 16002-16007. [20] Balar AV, Galsky MD, Rosenberg JE, et al.Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial[J]. The Lancet, 2017,389(10064): 67-76. [21] Zeng D, Ye Z, Shen R, et al.IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures[J]. Front Immunol, 2021,12: 687975. [22] Miyamoto H, Yang Z, Chen YT, et al.Promotion of bladder cancer development and progression by androgen receptor signals[J]. J Natl Cancer Inst, 2007,99(7): 558-568. [23] 王博, 林建勋, 于浩, 等. CD8+ T细胞的分布特征及其与膀胱癌预后关系的研究[J]. 中华泌尿外科杂志, 2015, (7): 500-504. [24] Raskov H, Orhan A, Christensen JP, et al.Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy[J]. Br J Cancer, 2021,124(2): 359-367. [25] Raskov H, Orhan A, Salanti A, et al.Natural Killer Cells in Cancer and Cancer Immunotherapy[J]. Cancer Lett, 2021,520: 233-242. [26] Gentles AJ, Newman AM, Liu CL, et al.The prognostic landscape of genes and infiltrating immune cells across human cancers[J]. Nat Med, 2015,21(8): 938-945. [27] Goode EL, Block MS, Kalli KR, et al.Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer[J]. JAMA Oncol, 2017,3(12): e173290. [28] Pernot S, Terme M, Radosevic-Robin N, et al.Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance[J]. Gastric Cancer, 2020,23(1): 73-81. [29] Han S, Zhang C, Li Q, et al.Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma[J]. Br J Cancer, 2014,110(10): 2560-2568. [30] Mahmoud SM, Paish EC, Powe DG, et al.Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer[J]. J Clin Oncol, 2011,29(15): 1949-1955. [31] Galon J, Bruni D.Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nat Rev Drug Discov, 2019,18(3): 197-218. [32] Sato E, Olson SH, Ahn J, et al.Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer[J]. Proc Natl Acad Sci U S A, 2005,102(51): 18538-18543. [33] Schumacher K, Haensch W, Röefzaad C, et al.Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas[J]. Cancer Res, 2001,61(10): 3932-3936. [34] Chen J, Zhong W, Yang M, et al.Development and validation of a PD-L1/PD-1/CD8 axis-based classifier to predict cancer survival of upper tract urothelial carcinoma after radical nephroureterectomy[J]. Cancer Immunol Immunother, 2021,70(9): 2657-2668. [35] Schumacher TN, Schreiber RD.Neoantigens in cancer immunotherapy[J]. Science, 2015,348(6230): 69-74. [36] Lee JS, Ruppin E.Multiomics Prediction of Response Rates to Therapies to Inhibit Programmed Cell Death 1 and Programmed Cell Death 1 Ligand 1[J]. JAMA Oncol, 2019,5(11): 1614-1618. [37] Chen X, Xu R, He D, et al.CD8(+) T effector and immune checkpoint signatures predict prognosis and responsiveness to immunotherapy in bladder cancer[J]. Oncogene, 2021,40(43): 6223-6234. [38] Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy [J]. Immunity, 2019,50(1): 195-211.e110. [39] Lee H, Quek C, Silva I, et al.Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients[J]. Oncoimmunology, 2019,8(2): e1537581. [40] Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M, et al. A Gene Signature Predicting Natural Killer Cell Infiltration and Improved Survival in Melanoma Patients[J]. Cancer Immunol Res, 2019,7(7): 1162-1174. [41] López-Soto A, Gonzalez S, Smyth MJ, et al.Control of Metastasis by NK Cells[J]. Cancer Cell, 2017,32(2): 135-154. [42] Hsu J, Hodgins JJ, Marathe M, et al.Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade[J]. J Clin Invest, 2018,128(10): 4654-4668. [43] Prat A, Navarro A, Paré L, et al.Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma[J]. Cancer Res, 2017,77(13): 3540-3550. [44] Mazzaschi G, Facchinetti F, Missale G, et al.The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC[J]. Lung Cancer, 2019,127: 153-163. [45] Barry KC, Hsu J, Broz ML, et al.A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments[J]. Nat Med, 2018,24(8): 1178-1191. [46] Mao X, Xu J, Wang W, et al.Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021,20(1): 131. [47] Calon A, Lonardo E, Berenguer-Llergo A, et al.Stromal gene expression defines poor-prognosis subtypes in colorectal cancer[J]. Nat Genet, 2015,47(4): 320-329. [48] Comito G, Giannoni E, Segura CP, et al.Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression[J]. Oncogene, 2014,33(19): 2423-2431. [49] Frings O, Augsten M, Tobin NP, et al.Prognostic significance in breast cancer of a gene signature capturing stromal PDGF signaling[J]. Am J Pathol, 2013,182(6): 2037-2047. [50] Derynck R, Turley SJ, Akhurst RJ.TGFβ biology in cancer progression and immunotherapy[J]. Nat Rev Clin Oncol, 2021,18(1): 9-34. [51] Chakravarthy A, Khan L, Bensler NP, et al.TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure[J]. Nat Commun, 2018,9(1): 4692. [52] Barrett RL, Puré E.Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy[J]. eLife, 2020,9. [53] Diaz-Montero CM, Finke J, Montero AJ.Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications[J]. Semin Oncol, 2014,41(2): 174-184. [54] Ford K, Hanley CJ, Mellone M, et al.NOX4 Inhibition Potentiates Immunotherapy by Overcoming Cancer-Associated Fibroblast-Mediated CD8 T-cell Exclusion from Tumors[J]. Cancer Res, 2020,80(9): 1846-1860. [55] Oliveira PA, Arantes-Rodrigues R, Vasconcelos-Nóbrega C.Animal models of urinary bladder cancer and their application to novel drug discovery[J]. Expert Opin Drug Discov, 2014,9(5): 485-503. [56] Zuiverloon TCM, de Jong FC, Costello JC, et al. Systematic Review: Characteristics and Preclinical Uses of Bladder Cancer Cell Lines[J]. Bladder Cancer, 2018,4(2): 169-183. [57] Chan E, Patel A, Heston W, et al.Mouse orthotopic models for bladder cancer research[J]. BJU International, 2009,104(9): 1286-1291. [58] Robertson AG, Kim J, Al-Ahmadie H, et al.Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer[J]. Cell, 2018,174(4): 1033. [59] Leblond MM, Tillé L, Nassiri S, et al.CD40 Agonist Restores the Antitumor Efficacy of Anti-PD1 Therapy in Muscle-Invasive Bladder Cancer in an IFN I/II-Mediated Manner[J]. Cancer Immunol Res, 2020,8(9): 1180-1192. [60] Fantini D, Glaser AP, Rimar KJ, et al.A Carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer[J]. Oncogene, 2018,37(14): 1911-1925. |