欢迎访问《岭南现代临床外科》官方网站,今天是 2025年4月9日 星期三

岭南现代临床外科 ›› 2024, Vol. 24 ›› Issue (05): 308-313.DOI: 10.3969/j.issn.1009-976X.2024.05.007

• 论著与临床研究 • 上一篇    下一篇

基于人工智能的甲状腺癌病理图像分析预测BRAF-V600E突变

余婷婷1, 朱晓彤1, 郭丽芬1, 李莉2,*   

  1. 1.中山大学孙逸仙纪念医院甲状腺外科,广州 510289;
    2.中山大学孙逸仙纪念医院急诊科,广州 510289
  • 通讯作者: *李莉,Email:lil3@mail.sysu.edu.cn
  • 基金资助:
    广州市科学技术局项目(2023A03J0722)

AI-based pathological image analysis for predicting BRAF-V600E mutation in thyroid cancer

YU Ting-ting1, ZHU Xiao-tong1, GUO Li-fen1, LI Li2   

  1. 1. Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510289, China;
    2. Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510289, China
  • Received:2024-08-29 Online:2024-10-20 Published:2025-01-06
  • Contact: LI Li, lil3@mail.sysu.edu.cn

摘要: 目的 探讨基于全玻片组织病理图像(WSI)的深度学习模型在预测甲状腺癌BRAF-V600E突变状态中的应用价值,并分析该突变与患者临床特征的相关性。方法 利用癌症基因组图谱(TCGA)的数据,开发了一种基于预训练ResNet50网络的深度学习模型,该模型通过自我注意机制从WSI中提取关键特征,构建了单任务二分类变量模型,预测患者的BRAF-V600E突变状态。共有305例乳头状甲状腺癌(PTC)患者用于模型训练,131例用于验证。模型性能通过ROC曲线下的AUC进行评估。同时分析BRAF-V600E突变与性别、年龄及肿瘤分期等临床特征的关联。结果 在训练集和验证集中的AUC分别为0.972和0.904,模型显示出高度的预测准确性。临床特征分析表明,BRAF-V600E突变在女性、55岁以下患者及晚期肿瘤患者中更为常见,突变阳性率与更高的肿瘤分期及淋巴结转移显著相关。结论 基于深度学习的WSI模型在预测甲状腺癌BRAF-V600E突变方面表现优异,能够为患者的个性化诊断和治疗提供支持。未来研究需整合多中心数据,以进一步验证模型的临床适用性和泛化能力。

关键词: 甲状腺癌, BRAF-V600E突变, 人工智能

Abstract: Objective To investigate the application value of a deep learning model based on whole-slide imaging (WSI) in predicting the BRAF-V600E mutation status in thyroid cancer and to analyze the correlation between this mutation and patients' clinical characteristics. Methods A deep learning model based on a pre-trained ResNet50 network was developed using data from The Cancer Genome Atlas (TCGA). The model employed a self-attention mechanism to extract key features from WSI and constructed a single-task binary classification model to predict the BRAF-V600E mutation status. A total of 305 papillary thyroid carcinoma (PTC) cases were used for model training, and 131 cases were used for validation. The model's performance was evaluated using the area under the receiver operating characteristic curve (AUC). Additionally, the association between BRAF-V600E mutation and clinical characteristics such as gender, age, and tumor staging were analyzed. Results The model achieved AUC values of 0.972 and 0.904 on the training and validation datasets, respectively, demonstrating high predictive accuracy. Clinical characteristic analysis revealed that the BRAF-V600E mutation was more common in females, patients under 55 years of age, and those with advanced-stage tumors. The mutation was significantly associated with higher tumor stages and lymph node metastasis. Conclusion The deep learning-based WSI model performed excellently in predicting BRAF-V600E mutation status in thyroid cancer, providing support for personalized diagnosis and treatment. Future studies should integrate multi-center datasets to further validate the model's clinical applicability and generalizability.

Key words: thyroid cancer, BRAF-V600E mutation, artificial intelligence

中图分类号: