[1] Byers T, Wender RC, Jemal A, et al.The American Cancer Society challenge goal to reduce US cancer mortality by 50% between 1990 and 2015: results and reflections[J]. CA Cancer J Clin, 2016, 66(5): 359-369. [2] Chen W, Zheng R, Baade PD, et al.Cancer statistics in China, 2015[J].CA Cancer J Clin, 2016, 66(2): 115-132. [3] Chen XZ, Liu Y, Wang R, et al.Improvement of cancer control in mainland China: epidemiological profiles during the 2004-10 National Cancer Prevention and Control Program[J]. Lancet, 2016, 388: S40. [4] Baghdadi M, Wada H, Nakanishi S, et al.Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells[J]. Cancer Res, 2016, 76(20): 6030-6042. [5] Matsumoto A, Pasut A, Matsumoto M, et al.mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide[J]. Nature, 2017, 541(7636): 228-232. [6] Schmitt AM, Chang HY.Long noncoding RNAs in cancer pathways[J]. Cancer Cell, 2016, 29(4): 452-463. [7] Liu SJ, Horlbeck MA, Cho SW, et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells [J]. Science, 2017, 355(6320): eaah7111. [8] Bray F, Ferlay J, Soerjomataram I, et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [9] Fitzmaurice C, Abate D, Abbasi N, et al.Global, regional and national cancer incidence, mortality, years of life lost years lived with disability, and disability-adjusted life years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study[J]. JAMA Oncol,2018,4(11):1153-1168. [10] Schmitt AM, Garcia JT, Hung T, et al.An inducible long noncoding RNA amplifies DNA damage signaling[J]. Nat Genet, 2016, 48(11): 1370-1376. [11] Du Z, Sun T, Hacisuleyman E, et al.Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer[J]. Nat Comm, 2016, 7(1): 1-10. [12] Chen L, Gibbons DL, Goswami S, et al.Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression[J].Nat Commun, 2014, 5(1): 1-12. [13] Kundu ST, Byers LA, Peng DH, et al.The miR-200 family and the miR-183~ 96~ 182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers[J]. Oncogene, 2016, 35(2): 173-186. [14] Yao YS, Qiu WS, Yao RY, et al.miR-141 confers docetaxel chemoresistance of breast cancer cells via regulation of EIF4E expression[J]. Oncol Rep, 2015, 33(5): 2504-2512. [15] Brozovic A, Duran GE, Wang YC, et al.The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells[J]. Mol Oncol, 2015, 9(8): 1678-1693. [16] Bell KFS, Al-Mubarak B, Martel MA, et al.Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2[J]. Nat Commun, 2015, 6(1): 1-15. [17] Lu MC, Ji JA, Jiang ZY, et al.The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: an update[J]. Med Res Rev, 2016, 36(5): 924-963. [18] Jeong Y, Hoang NT, Lovejoy A, et al.Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance[J]. Cancer Discov, 2017, 7(1): 86-101. [19] Oshimori N, Oristian D, Fuchs E.TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma[J]. Cell, 2015, 160(5): 963-976. [20] Guan L, Zhang L, Gong Z, et al.FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1-Nrf2 signaling[J]. Hepatology, 2016, 63(6): 1914-1927. |